FEATURES

- 10 year minimum data retention in the absence of external power
- Data is automatically protected during a power loss
- Separate upper byte and lower byte chip select inputs
- Unlimited write cycles
- Low-power CMOS
- Read and write access times as fast as 70 ns
- Lithium energy source is electrically disconnected to retain freshness until power is applied for the first time
- Full $\pm 10 \%$ operating range (DS1258Y)
- Optional $\pm 5 \%$ operating range (DS1258AB)
- Optional industrial temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, designated IND
protection is unconditionally enabled to prevent data corruption. DIP-package DS1258 devices can be used in place of solutions which build nonvolatile $128 \mathrm{~K} \times 16$ memory by utilizing a variety of discrete components. There is no limit to the number of write cycles which the DS12658Y/AB can accept, and no additional support circuitry is required for microprocessor interfacing.

PIN ASSIGNMENT

PIN DESCRIPTION

A0-A16	- Address Inputs
DQ0-DQ15	- Data In/Data Out
$\overline{\mathrm{CEU}}$	- Chip Enable Upper Byte
$\overline{\mathrm{CEL}}$	- Chip Enable Lower Byte
$\overline{\mathrm{WE}}$	- Write Enable
$\overline{\mathrm{OE}}$	- Output Enable
V_{CC}	- Power Supply $(+5 \mathrm{~V})$
GND	- Ground

- Ground

DESCRIPTION

The DS1258 128K x 16 Nonvolatile SRAMs are 2,097,152 bit fully static, nonvolatile SRAMs, organized as 131,072 words by 16 bits. Each NV SRAM has a self contained lithium energy source and control circuitry which constantly monitors V_{CC} for an out-of-tolerance condition. When such a condition occurs, the lithium energy source is automatically switched on and write

READ MODE

The DS1258 devices execute a read cycle whenever WE (Write Enable) is inactive (high) and either/both of $\overline{\mathrm{CEU}}$ or $\overline{\mathrm{CEL}}$ (Chip Enables) are active (low) and $\overline{\mathrm{OE}}$ (Output Enable) is active (low). The unique address specified by the 17 address inputs (A0-A16) defines which of the 131,072 words of data is accessed. The status of CEU and CEL determines whether all or part of the addressed word is accessed. If $\overline{\mathrm{CEU}}$ is active with $\overline{\text { CEL }}$ inactive, then only the upper byte of the addressed word is accessed. If $\overline{\mathrm{CEU}}$ is inactive with $\overline{\mathrm{CEL}}$ active, then only the lower byte of the addressed word is accessed. If both the CEU and CEL inputs are active (low), then the entire 16 bit word is accessed. Valid data will be available to the 16 data output drivers within $t_{\text {ACC }}$ (Access Time) after the last address input signal is stable, providing that $\overline{\mathrm{CEU}}, \overline{\mathrm{CEL}}$ and $\overline{\mathrm{OE}}$ access times are also satisfied. If $\overline{\mathrm{OE}}, \overline{\mathrm{CEU}}$, and $\overline{\mathrm{CEL}}$ access times are not satisfied, then data access must be measured from the later occuring signal, and the limiting parameter is either t_{CO} for $\overline{\mathrm{CEU}}, \overline{\mathrm{CEL}}$, or tOE for $\overline{\mathrm{OE}}$ rather than address access.

WRITE MODE

The DS1258 devices execute a write cycle whenever $\overline{W E}$ and either/both of CEU or CEL are active (low) after address inputs are stable. The unique address specified by the 17 address inputs (A0-A16) defines which of the 131,072 words of data is accessed. The status of $\overline{\mathrm{CEU}}$ and $\overline{\mathrm{CEL}}$ determines whether all or part of the addressed word is accessed. If $\overline{\mathrm{CEU}}$ is active with $\overline{\mathrm{CEL}}$ inactive, then only the upper byte of the addressed word is accessed. If $\overline{\mathrm{CEU}}$ is inactive with $\overline{\mathrm{CEL}}$ active, then only the lower byte of the addressed word is accessed. If both the $\overline{\mathrm{CEU}}$ and $\overline{\mathrm{CEL}}$ inputs are active (low), then the entire 16 -bit word is accessed. The write cycle is terminated by the earlier rising edge of $\overline{\mathrm{CEU}}$ and/or $\overline{\mathrm{CEL}}$, or $\overline{W E}$. All address inputs must be kept valid throughout the write cycle. WE must return to the high state for a minimum recovery time (twR) before another cycle can be initiated. The $\overline{\mathrm{OE}}$ control signal should be kept inactive (high) during write cycles to avoid bus contention. However, if the output drivers are enabled (CEU and/or $\overline{\mathrm{CEL}}$, and $\overline{\mathrm{OE}}$ active) then $\overline{\mathrm{WE}}$ will disable the outputs in todw from its falling edge.

READ/WRITE FUNCTION Table 1

OE	WE	CEL	CEU	$V_{C C}$ CURRENT	DQ0-DQ7	DQ8-DQ15	CYCLE PERFORMED
H	H	X	X	I cco	High-Z	High-Z	Output Disabled
L	H	L	L	Icco	Output	Output	Read Cycle
L	H	L	H		Output	High-Z	
L	H	H	L		High-Z	Output	
X	L	L	L	Icco	Input	Input	Write Cycle
X	L	L	H		Input	High-Z	
X	L	H	L		High-Z	Input	
X	X	H	H	Iccs	High-Z	High-Z	Output Disabled

DATA RETENTION MODE

The DS1258AB provides full functional capability for V_{CC} greater than 4.75 volts, and write protects by 4.5 volts. The DS1258Y provides full functional capability for V_{CC} greater than 4.5 volts and write protects by 4.25 volts. Data is maintained in the absence of V_{CC} without any additional support circuitry. The nonvolatile static RAMs constantly monitor $V_{C C}$. Should the supply voltage decay, the NV SRAMs automatically write protect themselves, all inputs become "don't care," and all outputs become high impedance. As V_{CC} falls below approximately 3.0 volts, a power switching circuit connects the lithium energy source to RAM to retain data.

During power-up, when V_{CC} rises above approximately 3.0 volts, the power switching circuit connects external V_{CC} to RAM and disconnects the lithium energy source. Normal RAM operation can resume after V_{CC} exceeds 4.75 volts for the DS1258AB and 4.5 volts for the DS1258Y.

FRESHNESS SEAL

The DS1258 devices are shipped from Dallas Semiconductor with the lithium energy sources disconnected, guaranteeing full energy capacity. When V_{CC} is first applied at a level greater than V_{TP}, the lithium energy source is enabled for battery backup operation.

ABSOLUTE MAXIMUM RATINGS*
Voltage on Any Pin Relative to Ground
Operating Temperature
Storage Temperature
Soldering Temperature

-0.3 V to +7.0 V
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for IND parts $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for IND parts $260^{\circ} \mathrm{C}$ for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS
$\left(\mathrm{t}_{\mathrm{A}}\right.$: See Note 10$)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
DS1258Y Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V	
DS1258AB Power Supply Voltage	V_{CC}	4.75	5.0	5.25	V	
Logic 1	$\mathrm{~V}_{\mathrm{IH}}$	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
Logic 0	$\mathrm{~V}_{\mathrm{IL}}$	0.0		+0.8	V	

$\left(V_{C C}=5 \mathrm{~V} \pm 5 \%\right.$ for DS1258AB)
DC ELECTRICAL CHARACTERISTICS (t_{A} : See Note 10) ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ for DS1258Y)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage Current	I_{IL}	-2.0		+2.0	$\mu \mathrm{~A}$	
I / O Leakage Current CE $\geq \mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\mathrm{CC}}$	I_{IO}	-1.0		+1.0	$\mu \mathrm{~A}$	
Output Current @ 2.4V	I_{OH}	-1.0			mA	
Output Current @ 0.4V	I_{OL}	2.0			mA	
Standby Current $\mathrm{CEU}, \mathrm{CEL}=2.2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CCS}}$		10	20	mA	
Standby Current CEU, CEL= CC	0.5V					

CAPACITANCE
$\left(t_{A}=25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C_{IN}		20	25	pF	
Input/Output Capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$		5	10	pF	

$\left(V_{C C}=5 \mathrm{~V} \pm 5 \%\right.$ for DS1258AB)
AC ELECTRICAL CHARACTERISTICS (t_{A} : See Note 10) $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right.$ for DS1258Y)

PARAMETER	SYMBOL	$\begin{gathered} \text { DS1258Y-70 } \\ \text { DS1258AB-70 } \end{gathered}$		$\begin{gathered} \text { DS1258Y-100 } \\ \text { DS1258AB-100 } \end{gathered}$		UNITS	NOTES
		MIN	MAX	MIN	MAX		
Read Cycle Time	t_{RC}	70		100		ns	
Access Time	$t_{\text {ACC }}$		70		100	ns	
$\overline{\text { OE }}$ to Output Valid	toe		35		50	ns	
$\overline{\mathrm{CE}}$ to Output Valid	t_{c}		70		100	ns	
$\overline{\text { OE or }} \overline{\mathrm{CE}}$ to Output Valid	$\mathrm{t}_{\text {COE }}$	5		5		ns	5
Output High Z from Deselection	tod		25		35	ns	5
Output Hold from Address Change	t_{OH}	5		5		ns	
Write Cycle Time	twc	70		100		ns	
Write Pulse Width	twp	55		75		ns	3
Address Setup Time	$\mathrm{t}_{\text {AW }}$	0		0		ns	
Write Recovery Time	twR1 twR2	$\begin{gathered} \hline 5 \\ 15 \end{gathered}$		$\begin{gathered} 5 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$
Output High Z from WE	todw		25		35	ns	5
Output Active from WE	toew	5		5		ns	5
Data Setup Time	$t_{\text {DS }}$	30		40		ns	4
Data Hold Time	$t_{\text {DH1 }}$ $\mathrm{t}_{\mathrm{DH} 2}$	$\begin{gathered} \hline 0 \\ 10 \end{gathered}$		$\begin{gathered} \hline 0 \\ 10 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$

READ CYCLE

SEE NOTE 1

WRITE CYCLE 1

SEE NOTES 2, 3, 4, 6, 7, 8 AND 12

WRITE CYCLE 2

POWER-DOWN/POWER-UP CONDITION

POWER-DOWN/POWER-UP TIMING
(t_{A} : See Note 10)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
$\overline{\mathrm{CEU}}, \overline{\mathrm{CEL}}, \overline{\mathrm{WE}}$ at $\mathrm{V}_{\text {IH }}$ before Power-Down	$t_{\text {PD }}$	0			$\mu \mathrm{s}$	11
$\mathrm{V}_{\text {CC }}$ Slew from $\mathrm{V}_{\text {TP }}$ to 0 V	t_{F}	300			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {CC }}$ Slew from 0V to $\mathrm{V}_{\text {TP }}$	t_{R}	300			$\mu \mathrm{s}$	
$\overline{\mathrm{CEU}}, \overline{\mathrm{CEL}}$ or at V_{IH} after Power-Up	$t_{\text {REC }}$	2		125	ms	

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES $\left.{ }^{\circ} \mathrm{C}\right)$
Expected Data Retention Time	t_{DR}	10			years	9

WARNING:

Under no circumstance are negative undershoots, of any amplitude, allowed when device is in battery backup mode.

NOTES:

1. $\overline{W E}$ is high for a read cycle.
2. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}. If $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ during write cycle, the output buffers remain in a high impedance state.
3. twp is specified as the logical AND of $\overline{C E U}$ or $\overline{\mathrm{CEL}}$ and $\overline{\mathrm{WE}}$. twp is measured from the latter of $\overline{\mathrm{CEU}}, \overline{\mathrm{CEL}}$ or $\overline{W E}$ going low to the earlier of $\overline{\mathrm{CEU}}, \overline{\mathrm{CEL}}$ or $\overline{\mathrm{WE}}$ going high.
4. t_{DS} is measured from the earlier of $\overline{\mathrm{CEU}}$ or $\overline{\mathrm{CEL}}$ or $\overline{\mathrm{WE}}$ going high.
5. These parameters are sampled with a 5 pF load and are not 100% tested.
6. If the $\overline{\mathrm{CEU}}$ or $\overline{\mathrm{CEL}}$ low transition occurs simultaneously with or later than the $\overline{\mathrm{WE}}$ low transition in the output buffers remain in a high impedance state during this period.
7. If the $\overline{\mathrm{CEU}}$ or $\overline{\mathrm{CEL}}$ high transition occurs prior to or simultaneously with the $\overline{\mathrm{WE}}$ high transition, the output buffers remain in high impedance state during this period.
8. If WE is low or the WE low transition occurs prior to or simultaneously with the CEU or CEL low transition, the output buffers remain in a high impedance state during this period.
9. Each DS1258 has a built-in switch that disconnects the lithium source until V_{CC} is first applied by the user. The expected $t_{D R}$ is defined as accumulative time in the absence of $V_{C C}$ starting from the time power is first applied by the user.
10. All AC and DC electrical characteristics are valid over the full operating temperature range. For standard products, this range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. For industrial products (IND), this range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
11. In a power down condition the voltage on any pin may not exceed the voltage on V_{CC}.
12. $\mathrm{t}_{\mathrm{WR} 1}, \mathrm{t}_{\mathrm{DH} 1}$ are measured from $\overline{\mathrm{WE}}$ going high.
13. $\mathrm{t}_{\mathrm{WR} 2}, \mathrm{t}_{\mathrm{DH} 2}$ are measured from CEU OR CEL going high.

DC TEST CONDITIONS

Outputs Open
Cycle $=200 \mathrm{~ns}$
All voltages are referenced to ground

AC TEST CONDITIONS

Output Load: $100 \mathrm{pF}+1$ TTL Gate Input Pulse Levels: 0.0 to 3.0 volts

Timing Measurement Reference Levels Input: 1.5 V
Output: 1.5 V
Input Pulse Rise and Fall Times: 5 ns

ORDERING INFORMATION

DS1258Y/AB NONVOLATILE SRAM 40-PIN 740 MIL EXTENDED MODULE

PKG	40-PIN	
DIM	MIN	MAX
A IN. MM	$\begin{aligned} & 2.080 \\ & 52.83 \end{aligned}$	$\begin{aligned} & 2.100 \\ & 53.34 \end{aligned}$
B IN MM	$\begin{aligned} & 0.715 \\ & 18.16 \end{aligned}$	$\begin{aligned} & 0.740 \\ & 18.80 \end{aligned}$
C IN. MM	$\begin{aligned} & 0.345 \\ & 8.76 \end{aligned}$	$\begin{aligned} & 0.365 \\ & 9.27 \end{aligned}$
D IN MM	$\begin{aligned} & 0.085 \\ & 2.16 \end{aligned}$	$\begin{aligned} & 0.115 \\ & 2.92 \end{aligned}$
E IN MM	$\begin{aligned} & 0.015 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.76 \end{aligned}$
$\begin{aligned} & \text { F IN. } \\ & \text { MM } \end{aligned}$	$\begin{aligned} & 0.120 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 0.160 \\ & 4.06 \end{aligned}$
G IN MM	$\begin{aligned} & 0.090 \\ & 2.29 \end{aligned}$	$\begin{aligned} & 0.110 \\ & 2.79 \end{aligned}$
H IN. MM	$\begin{aligned} & 0.590 \\ & 14.99 \end{aligned}$	$\begin{aligned} & 0.630 \\ & 16.00 \end{aligned}$
$J I N$. MM	$\begin{aligned} & 0.008 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.012 \\ & 0.30 \end{aligned}$
$\mathrm{K} \operatorname{IN} .$ MM	$\begin{aligned} & 0.015 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.58 \end{aligned}$

